
FreeSWITCH
Technical Application Notes

Table of Contents
About FreeSWITCH .. 1
Purpose, Scope and Audience ... 3
FreeSWITCH Deployment Information ... 4

FreeSWITCH External IP Address ... 4
Sending Calls to Broadvox ... 5
SRV Records ... 7
Testing SRV Records ... 7
Preferred and Alternate Codecs ... 9
Is FreeSWITCH NATd .. 9
Is FreeSWITCH Behind a Firewall ... 9
Is There a Local Firewall .. 9

Configuring FreeSWITCH .. 13

Confidential and Proprietary i

Confidential and Proprietary ii

About FreeSWITCH

FreeSWITCH is an open source telephony platform designed to facilitate
the creation of voice and chat driven products scaling from a soft-phone up
to a soft-switch. It can be used as a simple switching engine, a PBX, a
media gateway or a media server to host IVR applications using simple
scripts or XML to control the call flow.

FreeSWITCH supports various communication technologies such as
Skype, SIP, H.323, IAX2 and GoogleTalk making it easy to interface with
other open source PBX systems such as sipXecs, Call Weaver, Bayonne,
YATE or Asterisk.

FreeSWITCH supports many advanced SIP features such as
presence/BLF/SLA as well as TCP, TLS, and sRTP. It can also be used as
a transparent proxy with and without media in the path to act as a SBC
(session border controller) and proxy T.38 and other end to end protocols.

FreeSWITCH supports both wide and narrow band codecs making it an
ideal solution to bridge legacy devices to the future. The voice channels
and the conference bridge module all can operate at 8, 16, 32 or 48
kilohertz and can bridge channels of different rates.

FreeSWITCH builds natively and runs standalone on several operating
systems including Windows, Max OS X, Linux, BSD and Solaris on both 32
and 64 bit platforms.

The FreeSWITCH developers are heavily involved in open source and have
donated code and other resources to other telephony projects including
openSER, sipXecs, The Asterisk Open Source PBX and Call Weaver.

A Spec Sheet is available on the FreeSWITCH Wiki.

For more information about FreeSWITCH, visit www.freeswitch.org.

Confidential and Proprietary 1

http://www.freeswitch.org/
http://wiki.freeswitch.org/wiki/Specsheet
http://wiki.freeswitch.org/
http://www.freeswitch.org/

Confidential and Proprietary 2

Purpose, Scope and Audience

This technical application note describes the configuration of FreeSWITCH
for the Broadvox GO! SIP Trunking service on the Fusion platform. This
document is suitable for use by anyone deploying the Broadvox GO! SIP
Trunking service in conjunction with FreeSWITCH. This document has a
technical audience in mind – specifically IT professionals skilled in Linux
with some experience in PBX administration and familiarity with VoIP
technologies. This document is not for business administrators or people in
other non-technical careers. In order to successfully use this document to
deploy Broadvox GO! SIP Trunking service, you will need to possess the
following skills, or have access to professionals or consultants with the
following skills:

• Understanding of UNIX or Linux operating systems, including:
° Understanding of file and directory structure on target OS
° Understanding of firewall configuration on target OS
° Understanding of network configuration on target OS
° Understanding of service configuration on target OS

• Familiarity with network troubleshooting tools, including:
° Wireshark/Ethereal
° dig/nslookup
° ping
° traceroute

• Familiarity with PBX systems, including:
° Trunk configuration
° Calling plan configuration
° Extension configuration
° Mailbox configuration

• Familiarity with Session Initiation Protocol (SIP)
• An understanding of all seven layers of the Open System

Interconnection (OSI) model
• A complete understanding of your internal network structure,

Network Address Translation (NAT) setup, and firewall setup
• A complete understanding of your public Internet connectivity

Broadvox can only provide support for FreeSWITCH to the extent covered
in this Technical Application Note and the included reference configuration,
so if your level of technical expertise does not include the above skills, it is
recommended that you obtain the services of an FreeSWITCH
professional.

Confidential and Proprietary 3

FreeSWITCH Deployment Information

Before you begin deploying FreeSWITCH, please locate the following
information. If you have questions about any item, refer to the descriptions
and additional details provided on the pages that follow.

 External IP Address or DNS: ________________________

 Preferred Codec: PCMU g729

 Alternate Codec: PCMU g729 none

 Is FreeSWITCH NATd: Yes No

 Is FreeSWITCH Behind a Firewall: Yes No

 Is There a Local Firewall: Yes No

FreeSWITCH External IP Address

Your FreeSWITCH server will either use a public IP address or a private IP
address. If the IP address on your FreeSWITCH server is of the form
192.168.x.x, 172.16.x.x – 172.31.x.x, or 10.x.x.x, then your FreeSWITCH
server uses an internal, private IP address. This internal address is not
routable on the public Internet. In order for your FreeSWITCH server to
connect to the Broadvox Session Border Controller, you must either have a
public IP address on your FreeSWITCH server or you must translate your
private IP address into a public IP address using a Network Address
Translator (NAT).

If your FreeSWITCH server is behind a NAT, your public IP address will
typically be the public IP address of your NAT. You may also have a static,
one-to-one mapping of a public IP address to your private IP address. In
this case, your public IP address will not match the IP address of your NAT,
but you can look up the correct public IP address in your NAT configuration.
If in doubt, you can perform a network packet capture using Wireshark
(previously called Ethereal) on the public side of your NAT while
simultaneously issuing some form of Internet request on your FreeSWITCH
server.

Confidential and Proprietary 4

Sending Calls to Broadvox

In your Welcome letter, Broadvox provides DNS records to which you may
send calls, and from which you should be prepared to receive calls.
FreeSWITCH supports DNS A records, DNS SRV records, and IP
addresses.

At the top of your technical welcome letter, you will see a table like this one
which shows your account number, turn-up ticket number, and trunk
number. This information should be provided to Broadvox when you call for
assistance to expedite support.

Figure 1: Welcome Letter Account Information

The third page of the welcome letter contains a table of the IP addresses and
ports you need to allow through your firewall. Note that the table included here is
an example and may be out of date. Please consult your actual welcome letter.
Your firewall should be configured to accept signaling and media from these IP
address and port combinations.

Figure 2: Firewall Configuration Information

The third page also contains the IP address and DNS information you should use
for configuring your trunk. Broadvox recommends you utilize the DNS A record
entries for FreeSWITCH unless you have specific reasons not to.

Confidential and Proprietary 5

Figure 3: Trunk Destination Information

Also on the third page, you will find a section containing information about how
your trunk is configured on the Broadvox side. You should carefully review this
information to ensure it is configured properly.

Figure 4: Configuration of Broadvox Side

The 'Admin E-mail ' lists the E-mail address which will receive alerts from the
Broadvox SIP Trunking (Fusion) platform when various recognizable events
occur. These events include things such as calls being blocked because they
would cause you to exceed the simultaneous call sessions you purchased.

FreeSWITCH has been tested to support TLS and SRTP with some more
technically advanced configuration changes.

Finally, on the fourth page, you will find two sections that specify how Broadvox
is configured to send calls to your FreeSWITCH box and how Broadvox is
configured to receive calls from your FreeSWITCH box. These two sections are
only utilized if you provided static IP address information or DNS information.
Broadvox can send calls to entirely separate systems from the ones it is
configured to receive calls from. This allows you to split your inbound and
outbound traffic for any reason you may have, including but not limited to load
distribution over several systems or multiple Internet connections. In addition,
Broadvox can randomly load-balance calls across several systems using an
identical priority for the Send-To records. These options should allow you to
engineer your traffic flow to suite your particular needs.

Confidential and Proprietary 6

Figure 5: Signaling Configuration

SRV Records

Service records (SRV) are a form of Domain Name System (DNS) record. They
contain information about where to send requests for a particular service offered
at a specific domain. In the case of Broadvox GO! SIP Trunking, they provide the
IP addresses, port numbers, and preferences to use for sending SIP calls over
UDP, TCP, and TLS to Broadvox. The SRV location to use for sending calls to
Broadvox for each of your trunk groups is in your Welcome letter.

Testing SRV Records

Most Broadvox GO! SIP Trunking customers like to ensure the DNS entries are
functioning or they like to look up the actual IP addresses. In a Windows
environment, you can perform the SRV query using the nslookup command at a
command prompt, as shown in Figure 1.

Confidential and Proprietary 7

Figure 6: SRV Lookup in Windows XP

As you can see, a SRV record consists of a service type definition (_sip), a
transport definition (_udp), and the domain (nyc01-01.fs.broadvox.net).
FreeSWITCH will automatically add the service and transport definitions as a
prefix to the domain before performing the query. The query returns a priority,
weight, port and hostname for each entry. The query also returns the “A record”
entries for each hostname, which provides the IP address for each host.

In a UNIX or Linux environment, you can perform a query on the Broadvox SRV
records using the dig command:

$ dig srv _sip._udp.nyc01-01.fs.broadvox.net

; <<>> DiG 9.3.4-P1 <<>> srv _sip._udp.nyc01-01.fs.broadvox.net
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26443
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

;; QUESTION SECTION:
;_sip._udp.nyc01-01.fs.broadvox.net. IN SRV

;; ANSWER SECTION:
_sip._udp.nyc01-01.fs.broadvox.net. 600 IN SRV 10 0 5060 nyc01-
01.fs.broadvox.net.

;; AUTHORITY SECTION:
fs.broadvox.net. 600 IN NS ns03.broadvox.net.
fs.broadvox.net. 600 IN NS ns04.broadvox.net.

;; ADDITIONAL SECTION:
nyc01-01.fs.broadvox.net. 600 IN A 208.93.226.212

;; Query time: 95 msec
;; SERVER: 10.128.6.4#53(10.128.6.4)

Confidential and Proprietary 8

;; WHEN: Thu Jul 30 13:59:26 2009
;; MSG SIZE rcvd: 150

Preferred and Alternate Codecs

Broadvox allows you to select preferred and alternate codecs to simultaneously
meet your bandwidth requirements and provide greater end-to-end support. In
the event that your destination party or your destination party’s carrier cannot
support your preferred codec or alternate codecs, Broadvox will automatically
transcode your call to a supported codec.

When configuring codecs, please keep in mind that G.711 μLaw (PCMU)
consumes approximately 87.2 Kbps of bandwidth per simultaneous call over
Ethernet. G.729 Annex A (g729) will consume approximately 31.2 Kbps of
bandwidth per simultaneous call over Ethernet. Also, keep in mind that G.711
offers superior call quality when compared to G.729, but only if you have enough
bandwidth to support all of your simultaneous calls.

Is FreeSWITCH NATd

If your FreeSWITCH server uses an Internet-facing IP address of the form
192.168.x.x, 172.16.x.x – 172.31.x.x, or 10.x.x.x, then it is almost certainly
behind a Network Address Translation (NAT) device. If your server uses an
address of that form and is not behind a NAT, then it has no connectivity to the
Internet. Even if your server uses an IP address that does not match the forms
above, it is still possible (though very unlikely) that it is behind a NAT. If
FreeSWITCH is behind a NAT, you may need to perform port forwarding, set up
a DMZ host or configure a one-to-one static IP map.

Is FreeSWITCH Behind a Firewall

If FreeSWITCH is behind a NAT, then it is almost certainly behind a firewall. It is
also possible that FreeSWITCH uses a public IP address but is still behind a
firewall. If you use a Cisco PIX, SonicWALL, Shorewall, Firebox, or any other
brand of firewall, you may need to perform additional configuration steps on the
firewall device to allow FreeSWITCH to function properly. Additionally, you may
be using an Application Gateway such as an Ingate SIParator. These devices will
also need additional configuration to allow FreeSWITCH to function properly.
Configuring your firewall or application gateway is beyond the scope of this
document. In general, you will need to allow UDP port 5060 in both directions, as
well as UDP ports 1024 to 65535 for RTP.

Is There a Local Firewall

In addition to being behind a firewall, it is also possible that the FreeSWITCH
server itself utilizes a local firewall. Typically, FreeSWITCH is deployed on a

Confidential and Proprietary 9

UNIX or Linux operating system. These systems usually come with a firewall
program installed, like iptables. If your server uses iptables, you can check to
see if there are any rules in place by issuing the following commands:

$ iptables -L -v -n

Chain INPUT (policy ACCEPT 3549M packets, 4907G bytes)
 pkts bytes target prot opt in out source
destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source
destination

Chain OUTPUT (policy ACCEPT 688M packets, 51G bytes)
 pkts bytes target prot opt in out source
destination

$ iptables -L -v -n -t nat

Chain PREROUTING (policy ACCEPT 1836K packets, 118M bytes)
 pkts bytes target prot opt in out source
destination

Chain POSTROUTING (policy ACCEPT 2247K packets, 136M bytes)
 pkts bytes target prot opt in out source
destination

Chain OUTPUT (policy ACCEPT 2247K packets, 136M bytes)
 pkts bytes target prot opt in out source
destination

$ iptables -L -v -n -t mangle

Chain PREROUTING (policy ACCEPT 3551M packets, 4907G bytes)
 pkts bytes target prot opt in out source
destination

Chain INPUT (policy ACCEPT 3549M packets, 4907G bytes)
 pkts bytes target prot opt in out source
destination

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)
 pkts bytes target prot opt in out source
destination

Chain OUTPUT (policy ACCEPT 688M packets, 51G bytes)
 pkts bytes target prot opt in out source
destination

Chain POSTROUTING (policy ACCEPT 688M packets, 51G bytes)
 pkts bytes target prot opt in out source
destination

The output shown above indicates that there are no firewall rules configured on
this server. If you are using a different type of firewall software on your
FreeSWITCH server, you will need to consult the documentation for that software
to learn how to check whether it is enabled. If you have a local firewall enabled,
you will need to configure it to allow the appropriate ports, as described in “Is
FreeSWITCH Behind a Firewall”.

If you are using a standard iptables firewall setup, such as the one on Red Hat
Enterprise Linux, CentOS, Gentoo Linux, or Slackware Linux, these rules may be

Confidential and Proprietary 10

of use to you in allowing the appropriate traffic from the Broadvox Fusion
platform:

Allow SIP over UDP, TCP, and TLS:

iptables -I INPUT -p udp --dport 5060 -s 208.93.224.224/28 -j ACCEPT

iptables -I INPUT -p tcp --dport 5060 -s 208.93.224.224/28 -j ACCEPT

iptables -I INPUT -p tcp --dport 5061 -s 208.93.224.224/28 -j ACCEPT

iptables -I INPUT -p udp --dport 5060 -s 208.93.226.208/28 -j ACCEPT

iptables -I INPUT -p tcp --dport 5060 -s 208.93.226.208/28 -j ACCEPT

iptables -I INPUT -p tcp --dport 5061 -s 208.93.226.208/28 -j ACCEPT

iptables -I INPUT -p udp --dport 5060 -s 208.93.227.208/28 -j ACCEPT

iptables -I INPUT -p tcp --dport 5060 -s 208.93.227.208/28 -j ACCEPT

iptables -I INPUT -p tcp --dport 5061 -s 208.93.227.208/28 -j ACCEPT

Allow media:

iptables -I INPUT -p udp --dport 1024:65535 -s 208.93.224.224/28 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 208.93.226.208/28 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 208.93.227.208/28 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 64.158.162.71 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 64.158.162.100 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 64.152.60.71 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 64.152.60.164 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 209.249.3.71 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 209.249.3.81 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 64.156.174.71 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 208.93.227.5 -j ACCEPT

iptables -I INPUT -p udp --dport 1024:65535 -s 208.93.226.5 -j ACCEPT

Please note you may not be able to copy and paste these directly into a terminal
program like SecureCRT, PuTTY, ZOC, etc. You may need to paste into
Notepad or a similar text-only editor, and then copy and paste from there into the
terminal program. This extra step should eliminate any hidden formatting
characters that get copied along with the text (typically only applies when
performing the copy and paste on a Microsoft platform).

Any rules you insert into iptables must be loaded each time the FreeSWITCH
server restarts. There are typically two methods to accomplish this. The first (and
usually preferred) method is to use the iptables save and restore functionality. On
most platforms, you can simply issue one of these two commands:

/etc/init.d/iptables save

/etc/rc.d/iptables save

The second method is to use a start-up script to re-issue the commands that add
the rules. Generally, you would create a file in /etc/init.d or the appropriate
/etc/rc.d directory (based on your individual platform) that contains the
commands to create the rules. You would then chmod the file so that it is
executable. Next, you would either create a symbolic link in the appropriate
/etc/rc.d directory, or you would add it to your ‘local’ script which is
responsible for executing any custom start-up commands.

Confidential and Proprietary 11

If you require any further assistance in modifying your local firewall, please
consult the documentation appropriate for your OS distribution and firewall
program.

Confidential and Proprietary 12

Configuring FreeSWITCH

Please note that these configuration examples are presented only as a
guide and do not constitute a complete FreeSWITCH configuration. In
addition, they may contain errors or omissions.

If you require additional assistance configuring FreeSWITCH, you may be
able to obtain additional support using the FreeSWITCH IRC channel. The
FreeSWITCH developers, as well as many FreeSWITCH experts and
consultants, are available on the #freeswitch IRC channel on
irc.freenode.net during normal business hours. The FreeSWITCH
developers also provide support contracts through
http://www.freeswitchsolutions.com/.

After building and installing FreeSWITCH, you must configure it to use the
Broadvox "Fusion" SIP Trunking platform. You will need to start by configuring
your Sofia SIP profile so that it will speak to the Broadvox Fusion platform using
the correct protocols and options. This is a summary of the primary parameters
that need to be set on your SIP profile (on Linux, this is typically located in
/usr/local/freeswitch/conf/sip_profiles):

<profile name="broadvox">
 <gateways>
 <X-PRE-PROCESS cmd="include" data="broadvox/*.xml"/>
 </gateways>
 <settings>
 <param name="context" value="broadvox-in"/>
 <param name="rfc2833-pt" value="101"/>
 <param name="codec-prefs" value="PCMU,G729"/>
 <param name="inbound-codec-negotiation" value="greedy"/>
 <param name="unregister-on-options-fail" value="true"/>
 <param name="pass-rfc2833" value="true"/>
 <param name="inbound-late-negotiation" value="true"/>
 <param name="nonce-ttl" value="60"/>
 <param name="auth-calls" value="false"/>
 <param name="rtp-timeout-sec" value="300"/>
 <param name="rtp-hold-timeout-sec" value="1800"/>
 <param name="challenge-realm" value="auto_from"/>
 <param name="auto-rtp-bugs" data="~SONUS_SEND_INVALID_TIMESTAMP_2833"/>
 </settings>
</profile>

Please note that auto-rtp-bugs should be set to either "clear" or
"~SONUS_SEND_INVALID_TIMESTAMP_2833". Both of these settings will
disable code that was added to FreeSWITCH to try to circumvent an old Sonus
DTMF issue. The version of code that Broadvox uses on the Broadvox core
Sonus network does not suffer from the bug. Enabling the bug-fix code in
FreeSWITCH will actually break DTMF interoperability between FreeSWITCH
and the Broadvox Sonus core network. The bug was fixed by Sonus prior to April
20th, 2008, but Broadvox does not have the exact date. Also, due to branching of
code, some code branches released after that date are still believed to suffer
from the bug. It is impossible to automatically determine whether you are sending
to a Sonus device that suffers from the bug, so there is no way that FreeSWITCH
can automatically determine whether to enable or disable the fix. However,
Broadvox will guarantee that the current code on the Broadvox Sonus network

Confidential and Proprietary 13

http://www.freeswitchsolutions.com/

and all future code Broadvox deploys on the Broadvox Sonus network will not
suffer from the bug.

After modifying your Sofia SIP profile, you must define gateways to the Broadvox
Fusion platform for each city specified in your welcome letter. Start by making a
directory to hold the gateway information:

cd /usr/local/freeswitch/conf/sip_profiles
mkdir broadvox

Then create an XML file for each city-based gateway:

vim dfw01-01.fs.broadvox.net.xml
vim lax01-01.fs.broadvox.net.xml
vim nyc01-01.fs.broadvox.net.xml

The contents of these files should look like this:

<!-- This is dfw01-01.fs.broadvox.net.xml -->
<include>
 <gateway name="dfw01-01">
 <param name="username" value="your_btn_goes_here"/>
 <!--<param name="from-domain" value="your_public_ip_or_dns_goes_here"/>-->
 <param name="password" value="your_password_goes_here"/>
 <param name="proxy" value="dfw01-01.fs.broadvox.net"/>
 <!--/// expire in seconds: *optional* 3600, if blank ///-->
 <!--<param name="expire-seconds" value="300"/>-->
 <!--/// do not register ///-->
 <param name="register" value="false"/>
 <!--<param name="retry-seconds" value="30"/>-->
 <param name="ping" value="25"/>
 </gateway>
</include>
<!-- End of dfw01-01.fs.broadvox.net.xml -->

<!-- This is lax01-01.fs.broadvox.net.xml -->
<include>
 <gateway name="lax01-01">
 <param name="username" value="your_btn_goes_here"/>
 <!--<param name="from-domain" value="your_public_ip_or_dns_goes_here"/>-->
 <param name="password" value="your_password_goes_here"/>
 <param name="proxy" value="lax01-01.fs.broadvox.net"/>
 <!--/// expire in seconds: *optional* 3600, if blank ///-->
 <!--<param name="expire-seconds" value="300"/>-->
 <!--/// do not register ///-->
 <param name="register" value="false"/>
 <!--<param name="retry-seconds" value="30"/>-->
 <param name="ping" value="25"/>
 </gateway>
</include>
<!-- End of lax01-01.fs.broadvox.net.xml -->

<!-- This is nyc01-01.fs.broadvox.net.xml -->
<include>
 <gateway name="nyc01-01">
 <param name="username" value="your_btn_goes_here"/>
 <!--<param name="from-domain" value="your_public_ip_or_dns_goes_here"/>-->
 <param name="password" value="your_password_goes_here"/>
 <param name="proxy" value="nyc01-01.fs.broadvox.net"/>
 <!--/// expire in seconds: *optional* 3600, if blank ///-->
 <!--<param name="expire-seconds" value="300"/>-->
 <!--/// do not register ///-->
 <param name="register" value="false"/>
 <!--<param name="retry-seconds" value="30"/>-->
 <param name="ping" value="25"/>
 </gateway>
</include>
<!-- End of nyc01-01.fs.broadvox.net.xml -->

Confidential and Proprietary 14

If you are behind a NAT or have a dynamic, public IP address, you may wish to
enable registration. Registration is not required, even under a NAT scenario or a
dynamic, public IP address scenario, but it is recommended. You may utilize a
dynamic DNS record to support a dynamic, public IP address. You may utilize a
static NAT or DMZ configuration on your firewall/NAT router to support a NAT
configuration. Alternatively, Broadvox provides stun.fs.broadvox.net if you prefer
to use STUN in a NAT configuration. Broadvox generally does not recommend
the use of STUN. The Broadvox switch will perform automatic NAT traversal if it
detects that you are behind a NAT. FreeSWITCH also has built-in NAT detection
code through the UPnP or NAT-PMP functionality that may be built into your NAT
router.

After configuring the gateways to Broadvox, you will need to configure your
dialplan to route DIDs from Broadvox to your extensions. You can do this by
creating a new XML file in your dialplan directory that provides a dialplan for the
"broadvox-in" context:

cd /usr/local/freeswitch/conf/dialplan/
vim broadvox-in.xml

The contents of the XML file would look something like this:

<include>
 <context name="broadvox-in">

 <extension name="unloop">
 <condition field="${unroll_loops}" expression="^true$"/>
 <condition field="${sip_looped_call}" expression="^true$">
 <action application="deflect" data="${destination_number}"/>
 </condition>
 </extension>
 <!--
 Tag anything pass thru here as an outside_call so you can make sure not
 to create any routing loops based on the conditions that it came from
 the outside of the switch.
 -->
 <extension name="outside_call" continue="true">
 <condition>
 <action application="set" data="outside_call=true"/>
 </condition>
 </extension>

 <extension name="call_debug" continue="true">
 <condition field="${call_debug}" expression="^true$" break="never">
 <action application="info"/>
 </condition>
 </extension>

 <extension name="public_extensions">
 <condition field="destination_number" expression="^5552345678$">
 <action application="answer"/>
 <action application="play_and_get_digits" data="10 11 3 7000 #
$${sound_prefix}/ivr/8000/ivr-enter_ext_pound.wav $${sound_prefix}/ivr/8000/ivr-
that_was_an_invalid_entry.wav digits \d+"/>
 <action application="playback" data="$${sound_prefix}/ivr/8000/ivr-
thank_you.wav"/>
 <action application="playback" data="$${sound_prefix}/ivr/8000/ivr-
hold_connect_call.wav"/>
 <action application="set" data="continue_on_fail=true"/>
 <action application="set" data="hangup_after_bridge=true"/>
 <action application="set" data="bypass_media=false"/>
 <action application="set" data="proxy_media=true"/>
 <action application="bridge" data="sofia/internal.domain.com/${digits}"/>
 <action application="playback" data="$${sound_prefix}/ivr/8000/ivr-
im_sorry.wav"/>

Confidential and Proprietary 15

Confidential and Proprietary 16

 <action application="playback" data="$${sound_prefix}/ivr/8000/ivr-
please_try_again.wav"/>
 <action application="respond" data="503"/>
 </condition>
 </extension>
 </context>
</include>

In this example, if the dialed DID matches 5552345678, the call is sent to a very
basic IVR that simply gathers an extension from the calling party. It will then
attempt to ring that extension on the internal Sofia SIP profile you have
configured (assuming that internal.domain.com is a domain mapped to that
internal profile through an alias). When the call is connected, the media will be
transparently proxied through the FreeSWITCH server. On modern hardware,
you should be able to run hundreds (if not thousands) of calls through the
FreeSWITCH server in this manner.

This context will allow your DIDs to be routed to either specific users or to
specific IVR systems. Four outbound dialing, you need to set up a similar context
for your phones. You may use the default contexts provided by FreeSWITCH and
simply customize them to suit your needs. When you finally need to bridge the
call to Broadvox, you may use this Sofia dial string:

<action application="set" data="continue_on_fail=true"/>
<action application="set" data="originate_timeout=2"/>
<action application="set" data="originate_retries=1"/>
<action application="set" data="progress_timeout=15"/>
<action applicat="bridge" data="sofia/gateway/dfw01-
01/${destination_number}|sofia/gateway/nyc01-
01/${destination_number}|sofia/gateway/lax01-01/${destination_number}"/>

This dial string will attempt the number on the Dallas gateway first. If it fails for
any reason, it will attempt the NYC gateway next. If that also fails, then it will
attempt the LA gateway. The actions prior to the dial string instruct FreeSWITCH
to allow 2 seconds for attempting each gateway with a maximum of one retries
on each gateway before hunting to the next. In addition, it will timeout the call
attempt on a gateway if no ringing is received within 15 seconds of the gateway
notifying you that the call is being attempted. While a gateway outage should be
extremely rare, this will make any gateway outage completely transparent to you.
You may, of course, order the gateways however you like.

	About FreeSWITCH
	Purpose, Scope and Audience
	FreeSWITCH Deployment Information
	FreeSWITCH External IP Address
	Sending Calls to Broadvox
	SRV Records
	Testing SRV Records
	Preferred and Alternate Codecs
	Is FreeSWITCH NATd
	Is FreeSWITCH Behind a Firewall
	Is There a Local Firewall

	Configuring FreeSWITCH

